Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present statistical results from the Epoch of Giant Planet Migration RV planet search program. This survey was designed to measure the occurrence rate of giant planets interior to the water ice line of young Sun-like stars, compare this to the prevalence of giant planets at older ages, and provide constraints on the timescale and dominant inward migration mechanism of giant planets. Our final sample amounts to 85 single young (20–200 Myr) G and K dwarfs that we target across a 4 yr time baseline with the near-infrared Habitable-zone Planet Finder spectrograph at McDonald Observatory’s Hobby-Eberly Telescope. As part of this survey, we discovered the young hot Jupiter HS Psc b. We characterize survey detection completeness with realistic injection-recovery tests and measure an occurrence rate of % for intermediate-age giant planets ( ) within 2.5 au. This is lower than the field age occurrence rate for the same planet masses and separations and favors an increase in the prevalence of giant planets over time from ∼100 Myr to several Gyr, although our results cannot rule out a constant rate. A decaying planet occurrence rate is, however, strongly excluded. This suggests that giant planets located inside the water ice line originate from a combination of in situ formation or early migration coupled with longer-term inward scattering. The completeness-corrected prevalence of young hot Jupiters in our sample is % —similar to the rate for field stars—and the 95% upper limit for young brown dwarfs within 5000 days is <3.6% .more » « lessFree, publicly-accessible full text available July 21, 2026
-
The search for Earth-like exoplanets with the Doppler radial velocity (RV) technique is an extremely challenging and multifaceted precision spectroscopy problem. Currently, one of the limiting instrumental factors in reaching the required long-term 10−10level of radial velocity precision is the defect-driven subpixel quantum efficiency (QE) variations in the large-format detector arrays used by precision echelle spectrographs. Tunable frequency comb calibration sources that can fully map the point spread function (PSF) across a spectrograph’s entire bandwidth are necessary for quantifying and correcting these detector artifacts. In this work, we demonstrate a combination of laser frequency and mode spacing control that allows full and deterministic tunability of a 30 GHz electro-optic comb together with its filter cavity. After supercontinuum generation, this gives access to any optical frequency across 700–1300 nm. Our specific implementation is intended for the comb deployed at the Habitable-Zone Planet Finder (HPF) spectrograph and its near-infrared Hawaii-2RG array, but the techniques apply to all laser frequency combs (LFCs) used for precision astronomical spectrograph calibration and other applications that require broadband tuning.more » « less
-
Abstract Stellar magnetic fields have a major impact on space weather around exoplanets orbiting low-mass stars. From an analysis of Zeeman-broadened Feilines measured in near-infrared SDSS/APOGEE spectra, mean magnetic fields are determined for a sample of 29 M dwarf stars that host closely orbiting small exoplanets. The calculations employed the radiative transfer code Synmast and MARCS stellar model atmospheres. The sample M dwarfs are found to have measurable mean magnetic fields ranging between ∼0.2 and ∼1.5 kG, falling in the unsaturated regime on the 〈B〉 versusProtplane. The sample systems contain 43 exoplanets, which include 23 from Kepler, nine from K2, and nine from Transiting Exoplanet Survey Satellite. We evaluated their equilibrium temperatures, insolation, and stellar habitable zones and found that only Kepler-186f and TOI-700d are inside the habitable zones of their stars. Using the derived values of 〈B〉 for the stars Kepler-186 and TOI-700 we evaluated the minimum planetary magnetic field that would be necessary to shield the exoplanets Kepler-186f and TOI-700d from their host star’s winds, considering reference magnetospheres with sizes equal to those of the present-day and young Earth, respectively. Assuming a ratio of 5% between large- to small-scaleB-fields, and a young-Earth magnetosphere, Kepler-186f and TOI-700d would need minimum planetary magnetic fields of, respectively, 0.05 and 0.24 G. These values are considerably smaller than Earth’s magnetic field of 0.25 G ≲B≲ 0.65 G, which suggests that these two exoplanets might have magnetic fields sufficiently strong to protect their atmospheres and surfaces from stellar magnetic fields.more » « less
-
Free, publicly-accessible full text available April 1, 2026
-
Abstract We describe the discovery and characterization of TOI-7149 b, a 0.705 ± 0.075MJ, 1.18 ± 0.045RJgas giant on a ∼2.65 days period orbit transiting an M4V star with a mass of 0.344 ± 0.030M⊙and an effective temperature of 3363 ± 59 K. The planet was first discovered using NASA’s TESS mission, which we confirmed using a combination of ground-based photometry, radial velocities, and speckle imaging. The planet has one of the deepest transits of all known main-sequence planet hosts at ∼12% (Rp/R⋆∼ 0.33). Pushing the bounds of previous discoveries of giant exoplanets around M-dwarf stars (GEMS), TOI-7149 is one of the lowest mass M-dwarfs to host a transiting giant planet. We compare the sample of transiting GEMS to stars within 200 pc with a Gaia color–magnitude diagram and find that the GEMS hosts are likely to be high metallicity stars. We also analyze the sample of transiting giant planets using the nonparametricMRExoframework to compare the bulk density of warm Jupiters across stellar masses. We confirm our previous result that transiting Jupiters around early M-dwarfs have similar masses and densities to warm Jupiters around FGK stars, and extend this to mid M-dwarfs, thereby suggesting a potential commonality in their formation mechanisms.more » « lessFree, publicly-accessible full text available September 3, 2026
-
Abstract We report the discovery of a hot Jupiter candidate orbiting HS Psc, a K7 (≈0.7M⊙) member of the ≈130 Myr AB Doradus moving group. Using radial velocities over 4 yr from the Habitable-zone Planet Finder spectrograph at the Hobby–Eberly Telescope, we find a periodic signal of days. A joint Keplerian and Gaussian process stellar activity model fit to the radial velocities yields a minimum mass of MJup. The stellar rotation period is well constrained by the Transiting Exoplanet Survey Satellite light curve (Prot= 1.086 ± 0.003 days) and is not an integer harmonic nor alias of the orbital period, supporting the planetary nature of the observed periodicity. HS Psc b joins a small population of young, close-in giant planet candidates with robust age and mass constraints and demonstrates that giant planets can either migrate to their close-in orbital separations by 130 Myr or form in situ. Given its membership in a young moving group, HS Psc represents an excellent target for follow-up observations to characterize this young hot Jupiter further, refine its orbital properties, and search for additional planets in the system.more » « less
-
Abstract We present the discovery of GJ 251 c, a candidate super-Earth orbiting in the habitable zone (HZ) of its M dwarf host star. Using high-precision Habitable-zone Planet Finder and NEID RVs, in conjunction with archival RVs from the Keck I High Resolution Echelle Spectrometer, the Calar Alto High-resolution Search for M dwarfs with Exoearths with Near-infrared and optical Echelle Spectrograph, and the Spectropolarimétre Infrarouge, we improve the measured parameters of the known planet, GJ 251 b (Pb= 14.2370 days; = 3.85 M⊕), and we significantly constrain the minimum mass of GJ 251 c, placing it in a plausibly terrestrial regime (Pc= 53.647 ± 0.044 days; = 3.84 ± 0.75M⊕). Using activity mitigation techniques that leverage chromatic information content, we perform a color-dependent analysis of the system and a detailed comparison of more than 50 models that describe the nature of the planets and stellar activity in the system. Due to GJ 251’s proximity to Earth (5.5 pc), next generation, 30 meter class telescopes will likely be able to image terrestrial planets in GJ 251’s HZ. In fact, GJ 251 c is currently the best candidate for terrestrial, HZ planet imaging in the northern sky.more » « lessFree, publicly-accessible full text available October 23, 2026
-
The First Spin-Orbit Obliquity of an M dwarf/brown dwarf system: an eccentric and aligned TOI-2119 bABSTRACT We report the first instance of an M dwarf/brown dwarf obliquity measurement for the TOI-2119 system using the Rossiter–McLaughlin effect. TOI-2119 b is a transiting brown dwarf orbiting a young, active early M dwarf ($$T_{\rm {eff}}$$ = 3553 K). It has a mass of 64.4 M$$_{\rm {J}}$$ and radius of 1.08 R$$_{\rm {J}}$$, with an eccentric orbit (e = 0.3) at a period of 7.2 d. For this analysis, we utilize NEID spectroscopic transit observations and ground-based simultaneous transit photometry from the Astrophysical Research Consortium and the Las Campanas Remote Observatory. We fit all available data of TOI-2119 b to refine the brown dwarf parameters and update the ephemeris. The classical Rossiter–McLaughlin technique yields a projected star–planet obliquity of $$\lambda =-0.8\pm 1.1^\circ$$ and a three-dimensional obliquity of $$\psi =15.7\pm 5.5^\circ$$. Additionally, we spatially resolve the stellar surface of TOI-2119 utilizing the Reloaded Rossiter–McLaughlin technique to determine the projected star–planet obliquity as $$\lambda =1.26 \pm 1.3^{\circ }$$. Both of these results agree within $$2\sigma$$ and confirm the system is aligned, where TOI-2119 b joins an emerging group of aligned brown dwarf obliquities. We also probe stellar surface activity on the surface of TOI-2119 in the form of centre-to-limb variations as well as the potential for differential rotation. Overall, we find tentative evidence for centre-to-limb variations on the star but do not detect evidence of differential rotation.more » « less
-
Abstract We present the discovery of TOI-6303b and TOI-6330b, two massive transiting super-Jupiters orbiting a M0 and a M2 dwarf star, respectively, as part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. These were detected by NASA’s Transiting Exoplanet Survey Satellite and then confirmed via ground-based photometry and radial velocity observations with the Habitable-zone Planet Finder. TOI-6303b has a mass of 7.84 ± 0.31MJ, a radius of 1.03 ± 0.06RJ, and an orbital period of 9.485 days. TOI-6330b has a mass of 10.00 ± 0.31MJ, a radius of 0.97 ± 0.03RJ, and an orbital period of 6.850 days. We put these planets in the context of super-Jupiters around M dwarfs discovered from radial-velocity surveys, as well as recent discoveries from astrometry. These planets have masses that can be attributed to two dominant planet formation mechanisms—gravitational instability and core accretion. Their masses necessitate massive protoplanetary disks that should either be gravitationally unstable, i.e., forming through gravitational instability, or be among the most massive protoplanetary disks known to date to form objects through core accretion. We also discuss their possible migration mechanisms via their eccentricity distribution.more » « lessFree, publicly-accessible full text available June 2, 2026
An official website of the United States government
